Impaired Retinal Differentiation and Maintenance in Zebrafish Laminin Mutants

Oliver Biehlmaier, Yuri Makbankov, and Stephan C. F. Neuhauss

PURPOSE. To characterize morphologic and physiological alterations in the retina of three laminin mutant zebrafish, bashful (bal, lam1), grumpy (gup, lam1b), and sleepy (sly, lamc1), which were identified in forward genetic screens and were found to be impaired in visual functions.

METHODS. Mutant larvae were observed for defects in visual behavior by testing their optokinetic response (OKR). In addition, electroretinograms (ERG) were measured and retinal morphology was examined by standard histology, immunocytochemistry, TUNEL assay, and electron microscopy.

RESULTS. Both, gup and sly showed no OKR at any light intensity tested, whereas bal embryos showed some remaining OKR behavior at more than 40% of contrast. Consistent with the OKR result, gup and sly did not show an ERG response at any light intensity tested, whereas bal mutants exhibited small a- and b-waves at high light intensities. All three laminin mutants showed altered ganglion cell layers, optic nerve fasciculations, and lens defects. Again, bal showed the least severe morphologic phenotype with no additional defects. In contrast, both, gup and sly, showed severe photoreceptor outer segment shortening and synapse alteration (floating ribbons) as well as increased cell death.

CONCLUSIONS. Lamb1 and lamc1 chains play an important role in the morphogenesis of photoreceptors and their synapses. In contrast, lam1 is not involved in outer retina development.

From the 1Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, and the 2Brain Research Institute, University of Zurich, Zurich, Switzerland.

Supported by the Swiss National Science Foundation (SCFN), the Velux Foundation (OB), and the EMBO Young Investigator Program (SCFN).

Submitted for publication October 9, 2006; revised February 26, 2007; accepted April 20, 2007.

Disclosure: O. Biehlmaier, None; Y. Makbankov, None; S.C.F. Neuhauss, None

The publication costs of this article were defrayed in part by page charge payment. This article must therefore be marked "advertisement" in accordance with 18 U.S.C. §1734 solely to indicate this fact.

1Each of the following is a corresponding author: Oliver Biehlmaier, Swiss Federal Institute of Technology (ETH) Zurich, Department of Biology, and the Brain Research Institute, University of Zurich, Winterthurerstrasse 190, CH 8057 Zurich, Switzerland; biehlmaier@hifo.unizh.ch.

Stephan C. F. Neuhauss, University of Zurich, Institute of Zoology, Winterthurerstrasse 190, CH 8057 Zurich, Switzerland; stephan.neuhauss@zool.unizh.ch.

METHODS

All experiments were conducted in compliance with the ARVO Statement for the Use of Animals in Ophthalmic and Vision Research.

Fish Maintenance and Breeding

Fish were maintained and bred as described elsewhere. We used the zebrafish strains Tübingen (Tü) and Tü Long Fin (TL), grumpy (gup^{pt82}), sleepy (sly^{pt656}), and bashful (bal^{pt82}) larvae were obtained by mating of identified heterozygous carriers, and the embryos were sorted according to their small body and eye size. A comparison of the strength of these alleles with the published data suggests that the alleles used are functional null alleles. Embryos were raised at 28°C in E3 medium (5 mM NaCl, 0.17 mM KCl, 0.33 mM CaCl₂, and 0.33 mM MgSO₄) and staged according to development in days post-fertilization (dpf).

Retinal Histology

Larvae were anesthetized at 4°C on ice before fixation. For light microscopy, they were then immediately fixed in 4% paraformaldehyde in 0.2 M phosphate buffer (PB; pH 7.4) for 1 hour (4°C). Larvae...
for electron microscopy (EM) were fixed in 1% paraformaldehyde and 2.5% glutaraldehyde in 0.1 M PB overnight. For standard histology, fixed larvae were dehydrated in a graded series of ethanol-water mixtures and embedded in resin (Technovit 7100; Kulzer, Wehrheim, Germany). Micromtosections (3 μm) were prepared and mounted on slides (SuperFrost Plus; Menzel-Gläser, Braunschweig, Germany). They were then air dried at 60°C, stained with Richardson solution (1% azure, 1% methylene blue, and 1% borax in deionized water), and coverslipped with mounting medium (Entellan; Merck, Darmstadt, Germany).

Quantifications

Photoreceptor Layer: Thickness Quantification. Toluidine blue-stained resin-embedded sections with a thickness of 5 μm were evaluated by using bright-field optics. In each larva, we measured the photoreceptor layer thickness as the distance from the inner end of the photoreceptor soma to Bruch’s membrane. In each laminin mutant, three sections from two to three different fish were quantified. In each section, 10 loci in proximity to the optic nerve were analyzed. Thus, 20 to 30 loci were analyzed per replicate. The bar graphs were designed and the statistical tests performed in commercial software (Prism 4.03; GraphPad, San Diego, CA). Significance between bal, gup, and sly retinas was determined by one-way ANOVA and the Tukey post hoc test (Prism; GraphPad, San Diego, CA).

Lens Phenotype Quantification in the bal Mutant. Toluidine blue-stained, resin-embedded sections and unstained cryostat sections visualized by differential interference contrast (DIC) optics were screened for lens phenotypes in 35 eyes of 19 different bal larvae.

Electron Microscopy

The EM-fixed larvae were washed in 0.1 M PB for 2 hours and postfixed in 1% osmium tetroxide for 1 hour. After they were rinsed in 0.1 M PB, the specimens were dehydrated in a graded series of ethanol-water mixtures up to 100% ethanol. After prefiltration in 1:1 100% ethanol/embedding resin (Fluka, Buchs, Switzerland), larvae were infiltrated in pure embedding resin overnight. Larvae were then positioned in embedding capsules (Beem caps; Canemco & Marivac, Canton de Givre, Quebec, Canada) with fresh resin and polymerized at 60°C for approximately 16 hours. Ultrathin (60 nm) transverse sections were prepared, contrasted with lead citrate, examined, and photographed with a transmission electron microscope (model EM 900; Carl Zeiss Meditec, Oberkochen, Germany).

Cell Death Detection

Fixed larvae were cryoprotected in 30% sucrose for at least 4 hours. Entire larvae were then embedded in tissue-freezing medium (Cryotmix; Reichert-Jung, Vienna, Austria) and rapidly frozen in liquid N2. Cryosections (25 μm thick) were cut at −20°C, mounted on slides (Super Frost Plus; Menzel-Gläser; Braunschweig, Germany), air dried at 37°C for at least 2 hours, and stored at −20°C until further use. For cell death detection, the slides were thawed, washed three times in PBS (50 mM, pH 7.4), and incubated in blocking solution (BS; 10% NGS and 1% BSA in 0.3% PBS/Triton X-100) for 1 hour. Sections were then incubated overnight in primary antibody in BS at 4°C. The immunolabeling was visualized by using Alexa488-conjugated anti-mouse IgG or anti-rabbit IgG (1:1000; Invitrogen-Molecular Probes, Basel, Switzerland) as a secondary antibody. The following primary antibodies were used for immunostaining: monoclonal mouse anti-zip1 (1:20; University of Oregon Stock Center), monoclonal mouse anti-glutamine synthetase (GS, 1:700; Chemicon, Harrow, UK), and polyclonal rabbit anti-synaptin3 (Synt5, 1:400; Alomone Laboratories, Jerusalem, Israel).

After the immunostaining, the slides were coverslipped and analyzed under a fluorescence microscope (Axioscope; Carl Zeiss Meditec, with AxioVision 4 as the imaging software).

OKR Measurements

Visual performance was assessed by measuring the OKR as previously described.22 To measure eye velocity, single larvae were placed dorsal-side-up in the center of a Petri dish (35 mm diameter) containing 3% prewarmed (28°C) methylcellulose. Moving sine-wave gratings were projected by a linearized HP cp6111 projector onto a screen within the visual field of the larva. The apparent distance from the larva’s right eye to the screen was 4.65 cm, and the projection size on the screen was 8 × 6 cm, subtending a visual angle of 65.6° horizontally and 53.1° vertically. Eye movements were triggered by the visual stimulation and recorded by an infrared-sensitive CCD camera. Custom-written software (based on LabView IMaq ver. 5.1; National Instruments, Austin, TX) was used to control the stimulation and the camera to analyze the resulting images. Contrast sensitivity functions for wild-type (wt) and laminin mutant larvae were measured as eye velocity as a function of the spatial frequency of the moving grating at alternating movement direction (0.53 Hz). The averaged eye velocity for each spatial frequency was calculated by integration of eye-velocity traces. Graphs were designed and the statistical tests performed with commercial software (Prism 4.03; GraphPad). Significant differences between bal (n = 5), gup (n = 5), slr (n = 5), and their respective siblings (n = 5) were determined by a two-way ANOVA and Bonferroni post hoc test.

Electroretinographic Recordings

Electroretinograms (ERGs) were recorded from 5 dpf larvae as previously described.23 All specimens were dark-adapted for 30 minutes before positioning them in the recording chamber. Each larva was placed on the surface of a moist sponge with E3 medium and paralyzed by directly applying a droplet of the muscle relaxant (Esmeron; 0.8 mg/mL in larval medium; Organon Teknika, Eppelheim, Germany). Light flashes of 200 ms duration were separated by 7-second intervals. Unattenuated irradiation at the position of the subject as measured by a photometer with photopic sensitivity profile was 5.7 mW/cm². A virtual instrument (VI) (NI LabVIEW ver. 5.1; National Instruments) was used to control the stimulation and to record ERG traces on computer. Sampling was performed in buffered acquisition mode with a sampling rate of 1000 Hz, and responses were averaged between five acquisitions.

RESULTS

Laminin Mutations Lead to Alterations in Retinal Morphology

In previous studies, it has been shown that laminin mutations encoding for laminin α1, β1, and γ1 are important both for notochord differentiation and for proper intersegmental blood vessel formation.11–13,18 In addition, defects in vision have been reported for β1, and γ1 laminin mutant larvae.15 To assess the general retinal morphology of these laminin deficient fish, we analyzed laminin mutant and wt retinas with standard histologic techniques (Figs. 1A–D) at 5 dpf. All three laminin mutants showed similar retinal alterations: They pos-
Retinal Alterations in Zebrafish Laminin Mutants

Ultrastructure of Photoreceptors and Their Synapses in Laminin Mutants

Knowing that photoreceptors are affected by the laminin mutations in *gup* and *sly*, we examined the ultrastructure of the outer retina by using electron microscopy to gain further insight. Again, the situation in the *bal* mutant outer retina at 5 dpf (Fig. 3B) resembled very much the situation in wt larvae (Fig. 3A). *Bal* mutants showed normally elongated cone outer segments and healthy RPE cells. As expected from the immunohistochemical data, outer segments in *gup* (Fig. 3C) and *sly* (Fig. 3D) are strongly shortened. In addition to this photoreceptor defect, *gup* larvae express an altered RPE with fewer melanin granules and abundant vacuoles in the RPE (Fig. 3D). However, Bruch’s membrane, a structure where laminin-1 is deposited⁵ is unaffected by the mutations (Figs. 3E–H), thus indicating that the remaining synapses between photoreceptors and second order neurons still possess normal ribbon synapses.

Retinal Cell Death in Laminin Mutants

We next asked whether the retinal defects in these mutants are associated with an increase in apoptotic cell death by applying the TUNEL assay.⁶ The number of TUNEL-positive cells detected in 5 dpf wt (Fig. 4A) and *bal* (Fig. 4B) mutant larvae was

Figure 1. Transverse sections through wt (A) and laminin mutant retinas (B–D) and quantification of the respective photoreceptor layer thickness (E). The *bal* mutant (B) had no lens. The GCL and optic nerve were clearly altered. However, remaining parts of the retina were morphologically normal. The *gup* and *sly* mutants (C, D) also lacked or had smaller lenses and also showed GCL and optic nerve alterations. In addition, the photoreceptors were severely shortened, especially in *sly*. Quantification of photoreceptor thickness (E) reveals no differences between wt and *bal*, but significant differences between wt and *gup* and wt and *sly* (**P < 0.001; Tukey post hoc test).
very low with no more than one to three labeled cells per section and thus corresponded closely to the rate reported from zebrafish normal development. In contrast, the amount of cell death observed in gup (Fig. 4C) and sly (Fig. 4D) was very high, showing numerous dying cells all over the retina. In the sly mutant, most of the apoptotic cells were labeled in the outer nuclear layer (ONL), thus suggesting severe photoreceptor degeneration (Fig. 4D).

Cells of the Inner Retina in Laminin Mutant Zebrafish

To examine whether the alterations induced by the laminin defect also affect neurons of the inner retina, we labeled several cell populations by using specific antibodies: 5e11 to label amacrine cells, TH to label dopaminergic amacrine cells, cPKCβ to label mixed rod cone bipolar cells, and GS to label Müller cells (MCs). All these cell types were clearly identified by the respective antibody in the mutant retinas (data not shown) and the labeling did not show any altered morphology concerning the intensity and localization of the immunolabeling in the respective individual cells. However, GS staining was altered in all three mutant retinas with regard to the Müller cell end feet (Fig. 5). Despite a normal morphology with clearly labeled somata and radial processes spanning from the OLM to the ILM, the staining pattern was clearly altered in all three mutants at the level of the ILM, where the mutants (Figs. 5B–D) did not form a regularly shaped margin between the vitreous and the GCL.
as was seen in their wt siblings (Fig. 5A). In contrast, close examination of individual Mu¨ller cells clearly showed that Mu¨ller end feet of all three laminin mutants terminated irregularly at different depths of the inner retina (Fig. 5B–D) thereby not building any separating membrane between the neuronal and the vitreal part of the retina. Taking into account that the ILM is composed by Mu¨ller glia end feet and ECM components it is very much likely that the altered composition of the ECM leads to the breakup of the regular Mu¨ller end feet pattern.

FIGURE 4. TUNEL staining in transverse sections of wt and laminin mutant larvae at 5 dpf. (A) The wt siblings showed only a few TUNEL-positive cell bodies. (B) The bal larvae showed a slight increase in apoptotic cells in the ONL. The gup (C) and especially the sly (D) larvae exhibited strongly increased cell death all over the retina, with the highest number of apoptotic cells in the ONL. Scale bars, 50 µm.

Contrast Sensitivity and Retinal Signal Transmission in Laminin Mutants

To assess the impact of the described morphologic changes on vision, we measured contrast sensitivity of the OKR, a behavioral assay for visual performance and ERG, an electrophysiological assessment of outer retinal function.

Contrast sensitivity of all three laminin mutant larvae was severely reduced compared with that in respective wt siblings (Fig. 6; bootstrap resampling test, $P < 0.05$). However, the bal mutant (Fig. 6A) showed some residual OKR at light intensities of 50%, 70%, and 100%, thus suggesting that bal mutants are still able to see at higher light intensities.

To obtain insight in the overall physiology of the mutated eyes, we examined the ERGs of 5 dpf laminin mutant larvae and their wt siblings (Fig. 7). In accordance with the above described morphologic findings, bal mutants showed reduced but still clearly measurable ERG-signals (Fig. 7A). In contrast, both, gup and sly mutants did not show any remaining signal at any light intensity measured (Figs. 7C, 7E). These data are consistent with the behavioral analysis, indicating that bal mutants are able to see, whereas gup and sly are completely blind.

Given the nearly normal ERG in bal larvae, we hypothesized that the poor visual performance in the behavioral assay is due to defects in the retina and the lens. A small or degenerated lens should have a severe impact on visual behavior but should compromise the ERG only slightly.

DISCUSSION

In this study, we describe the retinal phenotype of three different laminin mutants, bal (lama1), gup (lamb1), and sly (lamc1) that had been previously described to have defects in notochord differentiation and intersegmental blood vessel formation. All three laminin mutants showed an altered GCL and optic nerve and lens defects. The bal mutant did not show any other morphologic alterations, whereas gup and sly showed severe degeneration at the level of photoreceptors and synapses. In addition, no OKR and no ERG were detectable in gup and sly larvae, whereas bal homozygous showed some remaining OKR and a clear ERG at high contrast levels.

According to our results, a mutation in the lama1 gene encoding for the $\alpha 1$ laminin chain (bal) leads to defective laminin111 (formerly known as laminin 1; see Ref. 26) and defective laminin121 but leaves all other 13 known laminins unaffected. In contrast, mutations in lamb1 and lamc1 lead to...
malformation of six different laminins in *gup* and 10 in *sly*, respectively.

Studies of the role of laminins in the zebrafish eye have shown that a defect in laminin expression leads to alterations in lens morphology. Semina et al. recently showed that lam1 mutants have severe lens defects, varying from small lenses to no lenses. This deficiency is likely to be due to a compromise in lens capsule integrity. However, because we still found lenses in some of the mutant eyes we suggest that the lens capsule defect leads to defective lens formation during early development, and later on, to a complete clearing of the lens from the laminin mutant eye.

In the OKR and ERG experiments, *bal* showed wt-like ERG but OKR responses only at high light intensities. We think that this difference in behavioral/functional performance in *bal* is caused by the altered lens morphology and the resultant low image quality on the mutant retina. In contrast, *gup* and *sly* did not show any measurable signals in any of the two functional tests due to the pathologically altered morphology of their photoreceptors that show shortened and degenerating outer segments, altered synapse ultrastructure, and thus impaired synaptic transmission. Similar phenotypes were observed in lamb2 chain–deficient mice. However, in contrast to *gup* and *sly*, lamb2 chain–deficient mice still show a measurable a-wave, as well as other zebrafish mutants with alterations in photoreceptors and their synapses such as lazy eyes and no OKR. Therefore, we suggest that the photoreceptor alterations in lamb1 and lamc1 mutant zebrafish lead to a more severe deterioration of photoreceptor function and signal transmission than that observed in beta2 chain–deficient mice and other zebrafish mutants. This hypothesis is strengthened by the proven localization of different laminin chains, respectively special laminin trimers at different parts of the retinal tissue (e.g., laminin332 in the interphotoreceptor matrix and OPL of the developing rat retina or lam1, lamb1, and lamc1 in the ILM and in Bruch’s membrane) where they fulfill tissue specific functions. Thus, we suggest that lamb1 and lamc1 play a crucial role for the development and maintenance of the photoreceptors and their synapses, whereas lam1 does not or is functionally compensated by lam5, which is likely to be expressed in this retinal region as well.

We found severe disorganization of the GCL and optic nerve in all three laminin mutants examined in the present study. Similar phenotypes have been described in other publications on laminin mutant or morphant zebrafish. There are two possible reasons for the GCL defect: One is that the malformation of the GCL may simply be associated with the fact of the reduced or lacking lens in the laminin mutants. Semina et al. tested this hypothesis by comparing lam1 mutants to embryos in which the lens vesicle had been surgically removed. Their results suggest that many of the anterior and posterior ocular defects in the lam1 mutant are independent of the lens degeneration and, therefore, we suggest that this also holds true for the lam1, lamb1, and lamc1 mutants of our present study. The second hypothesis to explain the GCL defect is that the lack of any of the α, β, or γ-chains needed to build up the heterotrimeric laminin111 protein affects the structural integrity of the ILM. This membrane is known to contain laminin111. Because of the interdependency between the laminins and the Müller cells in building up the ILM, this change in structural integrity influences the termination locus of Müller cell end feet and in consequence the GCL lamination. This hypothesis is supported by reports of similar GCL alterations in other zebrafish laminin mutants and morphants. Therefore, a malformed ILM probably leads to a deteriorated GCL.

In conclusion, we found that lam1, lamb1, and lamc1 mutations lead to lens defects and morphologic alterations of the GCL and the optic nerve, whereas only lamb1 and lamc1 mutations lead to severe photoreceptor dysfunction.

Figure 6. OKR of wt siblings versus laminin mutants at 5-dpf depicted as eye velocity as a function of stimulus spatial frequency (A–C). The OKR was significantly reduced in all three laminin mutants. (A) The *bal* mutants showed some remaining contrast sensitivity at higher contrast levels (>20%), whereas *gup* and *sly* mutants (B, C) were completely blind as they had lost all their contrast sensitivity and did not show any measurable OKR.
The affected retinal tissues are located in the retinal compartments known to contain laminin proteins in rodents, such as Bruch’s membrane, the interphotoreceptor matrix, and the ELM, OPL, IPL, and ILM. The lack or mutation of one chain of a trimeric laminin protein leads to developmental malformation and/or degeneration in the respective retinal compartments such as the photoreceptors, the OPL, or the GCL. As the mutation in the lama1 chain affects only the lens and the GCL and leaves other layers normal, we favor the idea that lama1 chains are not involved in outer retina development and maintenance or may be replaced by lama5 or other lama chains to compensate for the absent lama1 chain. The recent study by Semina et al. furthers this hypothesis by showing that other alleles of lama1 mutation show similar phenotypes, affecting the GCL and lens, such as baltp82. Thus, all three laminin chains examined in this study are crucial in the formation of a proper ILM and a normal GCL, but only lamb1 and lamc1 are vital for photoreceptor development and maintenance. Finally, the outcome of this hypothesis is that the location of the respective laminin chains throughout the zebrafish retina correlates nicely with the laminin chain distribution suggested by Libby et al. in the rat retina.

Acknowledgments

The authors thank Jeffrey Gross and Brian Perkins for helpful criticism and suggestions on the manuscript and Ticiana Jametti for helping with the GS staining.

References

